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ON THE MODELING OF SHELLS IN MULTIBODY DYNAMICS

OT,IVTER A. BAIJCHAI. TM, JOl; YOUNG CttOI t, AND CARI.O I.. BOTTASSO I

Abstract. Energy preserving/decaying schemes are presented for the simulation of the nonlinear multi-

body systems involving shell components. The proposed schemes are designed to meet four specific require-

ments: unconditional nonlinear stability of the scheme, a rigorous treatment of both geometric and material

nonlinearities, exact satisfaction of the constraints, and the presence of high frequency numerical dissipa-

tion. The kinematic nonlinearities associated with arl)itrarily large displacements and rotations of shells are

treated in a rigorous manner, and the material nonlinearities can be handled when the constitutive laws stem

fl'om the existence of a strain ener_" density function. The efficiency and robustness of the proposed ap-

proach is illustrated with specific numerical examples that also demonstrate the need for integration schemes

possessing high frequency numerical dissipation.

Key words, multil)ody dynamics, geometrically exact shell, time integration, energy decaying scheme

Subject classification. Applied and Numerical Mathematics

1. Introduction and Motivation. This work is concerned with the numerical simulation of geomet-

rically exact shell models within the context of multit)ody system dynamics. While the partial differential

equations that govern shell problems are well known and presented in numerous textt)ooks_ their numerical

treatment is still the subject of active research. Indeed, numerical analysis tools for partial differential equa-

tions have significantly changed in recent, years. In the past, general purpose discretization methods were

developed, with emphasis on robustness, performance, and accuracy. These methods aimed at solving vast

classes of problems such as ordinary differential equations, differential/algebraic equations, or hyperbolic

conservation laws.

This approach is now changing. The diffe.rential equations that govern many problems in mathematical

physics possess qualitative and structural characteristics that can be determined by studying their geometry.

Classical examples of such characteristics are the invariants associated with Hamiltonian systems, the sym-

plectic structure of the governing equations, or symmetries and attractors. There is increasing evidence that

numerical methods that correctly recover the qualitative features of the underlying differential equations are

often endowed with superior computational performance, greater robustness and improved accuracy.

This new paradigm has resulted in the development of a new mathematical discipline, called geometric

integration, whose aim can be summarized as: "the purpose of computing is insight, not numbers", to quote

Hamming [17]. Geometric integration theory is now becoming a bridge that links the work of pure, applied

and computational mathematicians, and it is usually expressed using the terminology and formalism of

differential geometry and Lie group theory.

In reality, engineers have used geometric integration for a number years. Simo and his co-workers were

among the first to develop special integration procedures for nonlinear structural dynamics. They analyzed
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theproblemofthedynamicsofrigidbodies[24],nonlinearelasto-dynamics[21l, geometricallyexactshells[22]
andgeometricallyexactbeams[23].In all cases, the idea was to design algorittuns that ensure the discrete

preservation of the total mechanical energy of the system, therefore obtaining _mcoT_.ditioT_,¢_lly .stable schemes

in the nonlinear regime. These energy methods, sometimes equipped with additional conservation properties,

such as the conservation of momenta, are becoming increasingly popular in multibody dynamics, paralleling,

although unknowingly, the mathematical developments of geometric integration theory.

However, increasing evidence points toward the fact that geometric integration is not sufficient, per se,

to obtain robust integration schemes. While these schemes perform well for problems with a small number of

degrees of fl'eedom or those featuring a "smooth" dynamic response, they tend to be quite unsatisfactory when

applied to the complex simulations encountered in many engineering applications [6]. In fact, the predicted

time histories of internal forces and velocities can present a significant high flequency content. Furthermore,

the presence of these high frequency oscillations hinders the convergence process for the solution of the

nonlinear equations of motion. The selection of a smaller time step does not necessarily help, as a smaller

time step allows even higher frequency oscillations to be present in the response. These oscillations are

particuIarly violent, in multibody dynamics simulations because these systems are rather stiff due to the

presence of numerous algebraic constraints, while the nonlinearities of the system provide a mechanism to

transfer energy from the low to the high fl'equency modes. These difficulties can easily go unnoticed in

many test cases, trot will create major problems for large scale simulations. Consequently, the presence of

high flequency numerical dissipation appears to be a.n indispensable feature of robust time integrators for

multibody systems. Such feature can be added to schemes developed within the framework of geometric

integrators, as it. will be shown in this paper. High frequency numerical dissipation does not alter the physics

of the problem, since the high frequency content of the response fltered out by the algorithm is itself an

artifact of the spatial discretization process and contains no information about the physical behavior of

the system. The need for high frequency dissipation in large finite element models has been recognized for

many years in various disciplines, from structural dynamics to fluid mechanics. The most widely used time

integrators for finite element analysis are high frequency dissipative [I9, 18].

This paper focuses on the development of a geometric integrator for shell structures that preserves

important qualitative features of the underlying equations, and is equipped with high frequency numerical

dissipation. The goal of the work is to obtain schemes presenting improved robustness and reliability over

standard %lack-box" integrators. In order to achieve this goal, the specific features of the equations governing

nonlinear flexible mukibody systems with shells are reviewed.

First, the governing equations are characterized by linear and rotational tensorial fields describing kine-

matic (displacements, velocities) and co-kinematic (forces, momenta) quantities. In shells, the rotational

field describes the evolution of unit director, and is therefore a special family of two-parameter rotations.

Second, the equations are nonlinear because of large displacements and finite rotations (geometric nonlin-

ea.rities), and possibly because of nonlinear constitutive laws (material nonlinearities). Third, the presence

of joints imposes different types of kinematic constraints between the various bodies of the system. In this

work, the Lagrange multipliers technique is used to enforce the constraints, giving the governing equations a

differential/algebraic nature. Fourth, the equations of motion imply the preservation of a number of dynamic

invariants, in particular the total mechanical energy, and the total linear and angular momenta.

Since discrete preservation of energy, leads to unconditional nonlinear stability, preservation of this in-

variant is a central focus of this paper. The proposed geometric integration procedure is therefore designed to

satisfy specific requirements. First., a. discretization process is developed that preserves the total mechanical



energy of the system at the discrete sohttion level, as well as tile total linear and angular momenta. This

process is independent of the spatial discretization procedure that is left arbitrary. In the present implemen-

tat.ion, the finite element method is used, and the mixed interpolation of tensorial components [1, 2, 16] is

implemented to avoid the shear locking problem. Next, the reaction forces associated with the holonomic

and non-holonomic constraints imposed on the system are discretized in a manner that guarantees the sat

isfaction of the nonlinear constraint manifold, i.e. the constraint condition will not drift. At the same time,

the discretization implies the vanishing of the work performed by the forces of constraint at the discrete

solution level. Consequently, the discrete energy conservation laws proved for the flexible members of the

system are not upset by the introduction of the constraints. The resulting Energy Preserving (EP) scheme

is a geometric integrator for multibody systems with shells that provides nonlinear unconditional stability.

However, it clearly lacks the indispensahle high frequency numerical dissipation required to tackle realistic

engineering problems.

Using a simple procedure [3, 4] based on the EP scheme, it. is possible to derive a new discretization

that implies a discrete energy decay statement. In the resulting Energy Decaying (ED) scheme, the system

no longer evolves on the constant energy level set, but is allowed to drift awav from it in a controlled

manner. This concept seems to be new in geometric integration theory, and provides a procedure to obtain

nonlinear unconditional stability (from the bound on the energy), together with a mechanism for removing

the undesired high frequencies. The discretization process for the forces of constraint is left unchanged:

the work they perform vanishes exactly, while the system evolves on the constraint manifold without drifts.

Therefore ED schemes satisfy all the requirements set forth earlier.

Related ED schemes for various problems in nmltibody dynamics were proposed in the literature. Finite

difference schemes were presented in [8, 9, 5, 13]. Time discontinuous Galerkin approximations of the

equations of motion written in the symmetric hyperbolic form are used in [7, 3]. In [14], ED schemes are

cast in the form of Runge-Kutta schemes and related to the basic concepts of geometric integration theory.

The analysis in ref. [4] shows that slightly different. EP and ED discretizations can be developed, usually

through different treatments or parameterizations of finite rotations. Some discretizations might also present

additional conservation properties. For instance, some EP and ED schemes also imply the conservation of

momenta, or are geometrically invariant [10, 15, 4]. These additional features are easily obtained by recasting

the field equations in fized pole form [11], a procedure that brings back again the link with Lie groups through

the use of exponentials and of Cayley's transform.

The paper is laid out as follows. The equations of motion for shells are presented in section 2. The energy

preserving scheme presented in section 3 is then generalized to an energy decaying scheme in section 4. A

special element, the shell revolute joint, used to connect shells to other components of a multihody system,

is developed in section 5. Finally, numerical examples are presented in section 6.

2. Formulation of the Equations of Motion.

2.1. Shell Kinematics. Consider a shell of thickness h and reference surface area ft, as depicted in

fig. 2.1. An inertial frame of reference S consisting of three nmtually orthogonal unit vectors il, i2, i3 is

used. Let r_0 be the position vector of an arbitrary point on the reference surface of the shell, and let ¢ be

the material coordinate along n_n_,the normal to the reference surface. The position vector _r of an arbitrary

point on the shell in its reference configuration is then

(2.1)
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Fl('. 2.1. Configuration of the shell in the reference and deformed configurations.

where (land (2 are the material coordinates used to represent the shell reference surface. The coordinates

(1, (2 and { form a set of curvilinear coordinates that are a natural choice to represent the shell geometry.

The coordinates (land (2 are assumed to be lines of curvatures of the shell reference surface. The base

vectors are then

g= .ql' g2' g3 = r__,l, r_.,2, = (1- R1 - R2 '

where R1 and R2 are the principal radii of curvature, a_,_ = r_,_, and the notation (e),, is used to denote a

derivative with respect to (". It is convenient to introduce a set of three mutually orthogonal unit vectors

at the shell reference surface (i.e. at _ = 0)

al . a2 .

e--t = ax/-ff_, e2 = ax/ff_, _a = n, (2.3)

where ac, a = a__ • a_._.

According to the classical inextensible director model, it is assumed that the material line initially normal

to the reference surface of the shell remains a straight line and suffers no extension. Therefore, the position

vector of a material point of the shell can be written as

_R(_I ,_2, ¢) = r.0((_ ,(2) + _u((' ,(2) + ¢ _E3(_1 ,(2), (2.4)

where u(( 1 , (2) is the reference surface displacement vector• The base vectors at the shell reference surface

in the deformed configuration are

G= (2.5)

Introducing the position vector, eq. (2.4), then yields

c,: i c, 1t ox/_6_ av/_a___, G:_ = E + ( H, (2.6)



where

E= [E,, __E2,E3]= e__+--,e2+--,E._ ; H= --,_v_ _ [ _,/_ _,0.
(2.7)

Note that. Ea(( 1,(2) is a unit vector, whereas _Ej and E 2 are not unit vectors, nor are they orthogonal to

_E3, as axial and transverse shearing strains develop during deformation.

2.2. Equations of Motion. The Green-Lagrange strain tensor e is defined as

e = ½(CYC - gT.q). (2.S)

Tile strain tensor e is defined in the curvilinear coordinate system defined by coordinates (1,(2 and (.

However, it is more convenient to work with strain tensor e defned in the locally rectangular system defined

by triad £t, e-2, e3, see eqs. (2.3). For shallow shells (i.e. (/Rl << 1 and (/R2 << 1) undergoing large

displacements and rotations but small strains (all strain components are assumed to be small compared to

unity), the strain-displacement relationships can be written as

e= _l [ETE_ I + ( (EWH + HTE + K)] , (2.9)

where

1/R_ 0 0 ]
,,= o 1/t?: o . (2.1o)

0 0 0

It is clear that the strains can be expressed in terms of five parameters: the three components of the

displacement field _A(through E 1 and _E_) and the two parameters defining the orientation of the unit

director E 3. Virtual changes in the strain energy of the structure are given by

where 5_" is the virtual strain energy density, and T the second Piola-Kirchhoff stress tensor. Introducing

the strains, eq. (2.9), and taking into account the symmetry of the stress tensor then yields

59 = 5E. (E + (H)r + 5H. (ET. (2.12)

The existence of a strain energy density fimction (" is postulated here, hence the constitutive laws are of the

form v = OV/Oe.

The velocity vector of material point P of the shell is obtained t)y differentiating the position vector,

eq. (2.4), with respect to time, to find v = _) + ¢_3. The kinetic energy of the system is now

f,LK = /_" (l((tf_ = [ p v.v d(dfl, (2.13)

where K is the kinetic energy density. Introducing the velocity vector then yields

1
/_" = _ P (£ + (£3) ('J + (£3)- (2.14)



Hamilton's Principle now writes

= o. (2.15)

Integrating through the thickness of the shell, we get

/11 £ {(_/," [_h- (J_t,,l nt- ]V2,2)] -t- _E-[.qj.- (!_,,,l -}- ]_[2,2) J- ]_3]} (t_-_(tf-- 0. (2.16)

In this expression, _h = rn_ + .&L3, and .q = s*_ + [*E 3 are the linear and angular momentum vectors of

the shell, respectively; the mmss coefficients are defined as m : ._, p d(, .s" = .fh P( d¢, [* = fh p(2 d(. The

spatial in-plane forces are _ = (EN_ + H_)/_, the out-of-plane forces N 3 = EN3, and the hending

moments _{_f/,_= (EM*_)/ax/-d-_.oa. The convected forces are N* = [N_,N_,N3] = ._, r d¢, and the bending

moments _%I_ = []tf|, Me, l_/a] : .fh T( de.

3. Energy Preserving Scheme. Discrete equations of motion that imply conservation laws for the

total mechanical energy, linear momentum and angular momentum of the system will now be developed.

Times ti and t I denote the initial and final times for a time step, respectively, and the sul)scripts (')i and (')f

indicate quantities at ti and tl, respectively. Furthermore, the subscript (')m is used to denote mid-point

average quantities defined ms

1

('),_ : _ [(')I + (.h]. (3.1)

The following matrix identity will be used extensively

T.GB, - ATB, = (A_ -.4,)TU,,_ + ..<,_(_ - R,). (3.2)

Hanfilton's principle, eq. (2.15), is now approximated in time in the the following manner

[_: - _ _E_: E.,][(.,-.,)+¢(_z.,-..,)].[ . +¢"

+(e_ - e,). (Era + ¢U.&o + (H_ - H,). (e.,_. }
O. (3.3)

The change in strain components from ti to Q is evaluated with the help of identity (3.2) to find

1

es - _-_: _ [(El - E_)T(E,,, +¢Um) + (Era + ¢Hm)T(EI - Z,)

- . E r .+(H I H,)T(E,,, + < .,,_(Hf - H,)] (3.,1)

Over one time step, the strain components can be approximated as e(r/) =em + rl(e I - e,:)/2, where r/ =

2(t - tin)/At is the non-dimensional time. If the strain energy density flmction 17"is viewed as a flmclion of

the scalar variable r/, the mean value theorem then implies the existence of a f/6 [-1,1] such that

Of" de2 : f; + r_. (el - e,). (3.5)f? : < + _ ,_a,,l



This relationship defines tile average second Piola-Kir(:hhoff stress tensor, r_ = O'_'/Oel_. C(nnbining this

result with eq. (3.4) then leads t.o

(E l - Ei)-(E,,, + (H,,)Ta + (H I - H,). (Emra = (el - e,) • r_ = I.) - 1:), (3.6)

where the symmetry of the stress tensor was taken into account. For linear constitutive laws of the form

r = C* e, where C* is the stiffness matrix, the average stress tensor simply becomes r,_ = C* era.

The fi)llowing configuration updates are now defined

7/,f -- _-i = '/_,n; ---E3f -- £3i __ £3,n" (3.7)
At At

Introducing eqs. (3.6) and (3.7) int.() the approximate expression for Hamilton's principle, eq. (3.3), then

leads to

-
_hh P (,'1,_ -1-(_3i).(?),i3c (£3i)-t-(_-) _-i)} (t(-,t_= {[_P(,?.:+ (£3:)•(i:+ (£a:)- [ _.

= fn i [(KI- _'') + (VI - I-i)] d(df_ = 0. (3.8)

This result clearly implies the conservation of the total mechanical energy of the system within a step.

In summary, the approximate form of Hamilton's principle given by eq. (3.3) leads to a discrete energy

conservation statement, eq. (3.8), when the configuration updates are chosen according to eqs. (3.7), and the

average stress according to eq. (3.5).

h_tegrating through the thickness of the shell leads to

[h/---hi N_.m,2)]£{(_,-u/)'L _ t (_",m.,+

]}+ (E-_a:- K_i) [ At (M_.,,, + M2.,,_) + Na., dU = 0. (3.9)

In this expression, the in-plane forces are N_,, = (E,,,N*_ + H,,_ll..'I*_)/aV"K-_g,_,the out-of-plane forces N3m =
r* *E,,N3,, and the bending moments _-_fm = (E,,,ll/f_,,)/a_._. The discrete governing equations of motion

for shells are then

ht - hi
At (N,,=: + N2m,2 ) = p_,=; (3.10)

QT _: - --qi QT (M,m,, + M2m 2 - N3m) = q__,,, (3.11)

where p are the externally' applied loads, and q* the externally applied moments measured in the local

system. The finite change in director orientation E__al - Eai was expressed in terms of the two parameter

incremental rotation vector, see B.

lnvariance of the system Hamiltonian under spatial translations and rotations implies the conservation

()f the linear and angular momenta. The preservation of these invariants is less crucial from a numerical point.

of view, since it. does not lead to non-linear notions of stability as in the case of the energy. However, is can

be of some interest, to note that momenta are indeed preserved at the discrete solution level by eqs. (3.10),

(3.11) and (3.7). The complete proof ()f this assertion is reported in ref. [12], and it is based on projecting

the discrete equations of dynamic equilibrium onto suitable test. flmctions and integrating over the shell.



Finally,it is importantto pointout that,theparticularspatialdiscretizationadopted plays no roh' in

the proofs leading to the properties of discrete energy and momentum conservation. Therefore, any spatial

diseretization of the discrete equations of motion will inherit these properties, when the configuration updates

are chosen according to eqs. (3.7), and the average stress according to eq. (3.5).

4. Energy Decaying Scheme. In this section we derive a scheme associated to a discrete law of

energy decay, using the EP scheme as a basic building block. The resulting integrator for shells features high

fiequency numerical damping, overcoming the difficulties and lack of robustness of EP methods.

First, an additional state is introduced at time ts = lim_0(t_ + e), and the subscript (*)j is used to

denote quantities at this time. The following averages are now defined

1 1

(*).q = _ [(*)y + (')j] ; (')h -- _ [(*)j + (*)i] • (4.1)

The ED scheme proceeds from the initial to the final time by means of two coupled steps: one step from ti

to tf, the other from ti to t). The time-discrete equations of dynamic equilibrium are

hj. - h i

(4.2)
or 'q] - 'q+

- hi

At

1

Q T "q-J- "q-i 1 ." --_t + _ [O_.(_r,_,,+ _v_+_.,°- :%) - O_ (M,p,,+ :_+r_,+,__ X3,>)]= q_.

The configuration update relationships are given as

(4.3)

u I =L£ i+At (_]+fij)/2, _a =-ui-At [_l-_i-a(_-_i)]/6;
(4.4)

E3. f ----- E3i -i- AI_ (E'3J" -i'- E.C_3j)I 2 , E3j _. E3i- g__' [£3f -- £3i- (i(--E3j - _'_i)] 16',

+'here ct is a tuning parameter that controls the amount of numerical dissipation provided by the scheme,

while the forces N++v and moments Mop are given by

N_,, = K_h + _ (Koj - No+)/2; ___L't_,= m_h.+ c, (moj - M_,:)/2. 0.5)

Using developments similar to those exposed for the EP scheme, it can be easily shown that the proposed

discrete equations imply

(KI + 1,9)- (K, + E) + a e2 = 0. (4.6)

c 2 is a positive quantity given by

e2 £ 1=

£'+

[-+II+__II-II+_II+2.++II,NII-IIL+ II+r II£3 II.IIE--'3II]d++

II_IIc+II_IIdr+_>0, (4.7)

where [I " [l= (*)j - (')+ is the .jump between t+ and tj. This result implies the decay of the total mechanical

energy, over one step of the. algorithm, (h'] + I.)) <_ (Ki + E). The parameter c_ can be used for controlling
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Fro. 5.1. Config_Lrat.ionof the shell revolute joint, in t,he reference and deformed con.fi.qurat,ions.

the amount of energy that is dissipated within the step. It should be noted that the property of preservation

of momentum observed in the EP case is lost in the ED algorithm.

It. is interesting to characterize the ED scheme with the classical tools of linear analysis. In fact, if the

scheme is applied to a single degree of freedom linear oscillator model problem, the asymptotic value of the

spectral radius of the amplification matrix, p_, is found to be p_ = (1 -ct)/(l + a). For _ = 1, p_: = 0, and

asymptotic annihilation is achieved. If a = 0, p_ = 1, and in view of eq. (4.6), energy is exactly preserved.

Hence, the ED scheme is in fact a family of schemes with a single tuning parameter, a, that controls the

amount of high frequency numerical dissipation; both asymptotic annihilation or exact energy preservation

can be achieved with the same scheme by using a = 1 or 0, respectively.

5. The Shell Revolute Joint. When modeling multibody systems with shell components, connections

between shell elements and other elements of the model must be carefldly treated. Indeed, beam or .joint

nodes involve six degrees of freedom, three displacements and three rotations. On the other hand, shell nodes

involve five degrees of freedom, three displacements and two rotations that determine the orientation of the

director E__. A typical situation is shown in fig. 5.1 that depicts the connection between a beam and a shell.

If the beam were clamped to the shell, the beam wouht apply bending moments and a "drilling moment"

at the connection point. The shell cannot sustain such drilling moment since it presents no stiffness about

an axis normal to its reference surface. Hence, the connection between the beam and the shell must be

done through a shell revolute joint, i.e. a revolute .joint with its axis of rotation perpendicular to the shell

reference surface.

Consider a beam and a shell denoted with superscripts (.)k and (.)t, respectively: linked together by a

shell revolute joint, as depicted in fig. 5.1. In the reference configuration, the normal to the shell is n__and the

triad £1o, £20, and £3o = n is attached to the beam at the connection point.. In the deformed configuration,

no relative displacements are allowed and the beam attached triad rotates to £_, £2, and £:_ = E._. This

condition implies the orthogonality of _Ea to both £1 and e_2. The kinematic constraints associated with a

shell revolute joint are

C_ = E 3 - £,_ -- 0, (5.1)

where o = 1,2. Of course, at the connection point, the displacements of the beam and shell are identical; this
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F[(;, 6.1. ConJ_guration of the lateral buckling problem.

constraint is readily enforced within the framework of finite element formulations by Boolean identification

of the corresponding degrees of freedom. Holonomic constraints are enforced by the addition of a constraint

i)otentia] A C, where A is the Lagrange multiplier. The details of the procedure used to enforce constraints

in such a manner that the work done by the constraint forces vanishes exactly can be found in refs. [3, 5].

6. Numerical Examples. All the examples described in this section will be treated with the proposed

ED family of schemes corresponding to values of the tuning parameter c_ C [0, 1]. Although any value of a

within this range can be used, the examples described here will contrast the two extreme choices. For c_ = 1

(P_o = 0), asymptotic annihilation is obtained, and this will be called the ED scheme. On the other hand,

for c_ = 0 (p:_ = 1), exact energy preservation is achieved, and this will be called the EP scheme.

6.1. Lateral Buckling of a Thin Plate. Consider a thin cantilevered plate acted upon by a crank

and link mechanism, as depicted in fig. 6.1. The plate is of length L = 1 m, width h = 0.08 m and thickness

t = 2 mm. It is clamped along edge AB and reinforced along edge CD by a beam with a square cross-section

of side a = 4 ram. At point C, the beam connects to a crank and link mechanism. The crank of length

Lc = 0.1 m is attached to the ground at point G, and the link is of length Lc = 0.5 m. The ground,

crank, and link are connected together by means of revolute joints, whereas the beam and link are connected

through a spherical joint. All components are made of steel with the following properties: Young's modulus

E = 210 GPa, Poisson ratio v = 0.25 and density p = 7870 kg/m a. The crank rotates at constant angular

velocity fl = 1 rad/s, and the system is simulated for a period of 27r s, corresponding to a complete revolution

of the crank.

The system is modeled first using a geometrically exact beam element, then using the shell element

described in this paper. The crank and link are modeled by rigid bodies. For the beam model, three four-

noded, geometrically exact beam elements were used, whereas for the shell model a 6 × 2 grid of quadratic

elements was used. The simulation used the ED version of the proposed algorithm (p_ = 0.0) with a

constant time step At = 10 -o3 s.

As the crank rotates, the plate deflects downwards then snaps laterally when its buckling load is reached.

In the post-buckling regime, the plate becomes significantly softer in bending due to its large twisting allowed

by the spherical joint. These features are illustrated in fig. 6.2 that depicts the post-buckling of the plate at

various times. The plate mid-span lateral deflections obtained for both beam and shell models are shown in

10
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fig. 6.3, and good agreement between the models is observed. In both cases, elastic vibrations are superposed

onto the overall motion imparted by the crank. An enlarged view of the onset of buckling for both models is

shown in fig. 6.4; the sudden appearance of lateral deflections and subsequent oscillations are observed. This

figure also shows that the agreement between the beam and shell models is qualitative, not quantitative, as

should be expected.

Prior to buckling, the plate resists the bending loads applied by the driving mechanism with very little

deformations, and high shear forces build up in the plate. When buckling occurs, twisting of the plate

renders it much softer in the vertical direction, offering little resistance to crank motion. Figs. 6.,5 and 6.6

show the mid-span in-plane shear force F12 and crank driving torque, respectively. Note the linear increase

12
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of the driving torque up to Q _ 60 Nm, followed by an abrupt drop at buckling. This jump excites the

vibratory modes of the system.

Next, the same problem was simulated using the EP schemes, i.e. (p..,_ = 1.0). Lateral displacements,

see figs. 6.3 and 6.4, are found to be in good agreement with the ED predictions. The change in sign for

the lateral deflection is immaterial since the plate can t)uckle in either direction. Figs. 6.5 and 6.6 compare

the predictions of the EP and ED schemes for mid-span in-plane shear force F1.) and crank driving torque,

respe(:tively. The EP predictions show high frequency oscillations with amplitudes an order of magnitude

larger than those predicted by the ED scheme. This numerical noise completely obscures the results of the

computation.

6.2. Snap-Through of a Cylindrical Shell. A crank and link mechanism is used to drive a cylindrical

shell through an unstable, snap-through configuration. The system geometry is depicted in fig. 6.7. The shell

consists of a 60 degree sector of a cylinder of height h = 2.5 m, radius R = 5 m and thickness t = 8 ram. The

two straight edges of the shell are simply supported, whereas the other two are free. The shell is reinforced

along line BE by a beam with a square cross-section of side a = 20 mm. At point E, the beam connects

to a crank and link mechanism. The crank of length Lc = 1.5 m is attached to the ground at point G

located 5 m below point E. The beam, link, crank, and ground are connected together by means of revolute

joints. The crank is modeled as a rigid body, while the link is a beam with a square cross-section of side

s = 40 mm. The shell and reinforcing beam are made of aluminum: Young's modulus E = 73 GPa, Poisson

ratio u = 0.30 and density p = 2700 kg/m a. The lever is made of steel: Young's modulus E = 210 GPa,

Poisson ratio u = 0.30 and density p = 7800 kg/m 3.

The crank rotates with the following schedule

,_ (1 - eos2,rt/T)/2 t <_ T/2 (6.1)_(t)
L rc t > T/2 '

where T = 3 s. The system is simulated for a period of 2 s. The shell is meshed with an 8 x 4 grid of

quadratic shell elements, whereas the link is meshed with four cubic beam elements. The simulation was

conducted using the ED scheme with p_ = 0, i.e. asymptotic annihilation, and a constant time step size

13
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During the first 90 degree rotation of the crank, the link pulls tile shell downwards until snap-through

takes place and curvature reverses. Curvature reversal initiates in the neight_orhood of the link connection,

then quickly propagates to the shell free edge, which undergoes violent oscillations. During the next 90

degree rotation of the crank, the link now pushes the inverted shell upwards, until snap-through occurs

and curvatm'e reverts to its original sign. During the entire sequence, violent oscillations are observed, as

depicted in fig. 6.8 that shows the system at various instants in time.

Vertical displacements at point B, 3./, and E are shown in fig. 6.9. The displacement of point E closely

follows the prescribed input imparted by the crank, whereas those at. points B and M reflect the additional

elastic vibrations of the shelt. At first, the shell takes a double-S configuration: the curvature of tim cent ral

part of the cylinder is already negative, while remaining positive along the simply supported edges. Snap-
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through occurs at about t _ 0.7 s and vibrations occur in the inverted configuration. As the crank pushes

the shell back up, local deformations appear at. first, followed by a rapid snap-back to the original curvature

at t ._ 1.25 s, when the crank is about to stop. Due to the speed of snap-back, violent oscillations about

the original shell configuration are observed in the latter part of the simulation. The components M]I and

_l.Ie2 of bending moment at point E are shown in fig. 6.10. Here again, the snap-through events are clearly

identifiable. The lever mid-span axial force and bending moment arc sown in figs. 6.11 and 6.12, respectively,

Next., the system was simulated with the EP scheme, i.e. with p,:¢ = 1. In order to achieve convergence of

the iterative solution procedure for the nonlinear equations of motion, the time step size had to be reduced

to At = 1.25 10 03 then 6.25 10 04 s at times t = 0.835 and 0.8475 s, respectively. A good agreement
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between the ED and EP predictions is shown in fig. 6.9, although discrepancies are apparent when significant

oscillations occur. The bending moments shown in fig. 6.10 are once again in good agreement during the

beginning of the simulation, but at the end of the snap-through phase (i.e. t _ 0.835 s), tile EP scheme

is unable to deal with the complex dynamic behavior of the system: a smaller time step is required for

convergence, and violent high frequency oscillations of a purely numerical origin appear. The amplitudes

of these oscillations are an order of magnitude larger than those predicted by the ED scheme. The same

remarks can be made about the lever mid-span axial force and bending moments shown in figs. 6.11 and 6.12,

respectively. In fact, the bending moment response, a simple superposition of oscillations involving the lowest

two natural modes of the lever as predicted by the ED scheme, is completely obscured by numerical noise

in the EP scheme. Since vibratory stresses are of great, importance to designers, it is essential to assess

the ability of new integration schemes to reliably predict, these quantities. It is mffortunate that many

scientific publications about geometric integration only present responses for preserved quantities such as

total mechanical energy or momentum. The above plots demonstrate that while EP schemes might perform

very well for the prediction of total energy, momentum, or even displacement fields, they are unable to

reliably predict other important fields such as velocities and internal stresses. Consequently, such schemes

are of little value in real life applications.

6.3. Deployment of a Space Antenna. Consider a space antenna consisting of four square composite

panels of size 5 x 5 m. A typical panel in shown in fig. 6.13. Each panel is reinforced along opposite edges

AiBi and C,D_ by beams of length L = 2 m. These reinforcing beams are attached at points Ai and Bi to

connector beams, and points C, and D, to revolute joints. The connector beams are attached to the revolute

joints of the preceding panel. At points Al and Bl, Panel 1 is connected to the ground by means of revolute

joints• The stowed configuration of the entire system is also depicted in fig. 6.13.

The panels are made of laminated composite material with a 12 ply lay-up [0, 90,45,-45,45,-45°]_,

where the 90 ° direction is parallel to that of the reinforcing beams. The material properties of the composite

are: longitudinal modulus EL = 138 GPa, transverse modulus E7 = 8.96 GPa, shearing modulus Gt_r =

7.1 GPa, Poisson's ratio vl, y ---- 0.3, and ply thickness tv = 0.125 ram. The reinforcing and connector

beams have a square cross-section of side a_ -- 10 mm and a_ = 20 mm, respectively. They are made of a

homogeneous isotropic material with the following properties: E = 140 GPa, and density p = 7000 kg/m 3.

Each of the eight revolute joints weighs 8 kg and is spring h)aded to deploy the antenna• Each spring applies
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TABLE 61

Physical properties of the springs and dampers at the _volute joints.

R,evolute Mo 00 n #

,Joint. at [Nm] [rad] [Nms/rad]

A1, B1 1.0 1r/2 6 20.0

Ci, D1 0.8 7r 12 9.0

C2, D2 0.7 7r 12 7.0

C:_, D:_ 0.5 7r 12 5.0

a moment M._ = M0[1 - (0/00) n] at the joint. Furthermore, a damper is present in each joint and applies a

moment Md = p0, where 0 is the relative rotation at the joint. The constants M0, 00, n and p are listed in

table 6.1 for each joint.

Under the effect of the springs in the revolute joint, the antenna deploys. Configurations of the system

at various instants in time are shown in fig. 6.14, and the relative rotations at four revolute joints during

deployment are shown in fig. 6.15. To validate the simulation, a simplified model of the system using

geometrically exact beam elements to represent the panels was also run. The predictions of both models are

in fair agreement.

It should be noted that the composite lay-up used for the panels presents a 10% bending-twisting

elastic coupling term. Consequently, the bending of the panels during deployment generates twisting, and

the motion of the entire system becomes three-dimensional. To illustrate this effect, the rotations of the
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reinforcing beams about the axis i, are shown in fig. 6.16. These rocking motions of up to 7 degrees generate

large, mid-span shear forces in the connecting beams between Panels I and 2 that are shown in fig. 6.17.

These effects are ignored in the beam model that. predicts a two-dimensional motion.

The bending moments Mll at the center point, of each panel are shown in fig. 6.18. Pronounced dis-

crepancies are observed between the shell and beam models because the latter does not take into account

the bending-twisting coupling behavior in the panels. Note the much higher frequency content predicted

by the shell model. This is due to the twisting and transverse bending of the panels that occur at nmch

higher frequencies than those associated with longitudinal bending. Significant twisting 3ll2 and transverse

bending M22 moments develop in the panels, as depicted in fig. 6.19; of course, these twisting moments
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vanish in the beam model. Note that the transverse bending moment M.2.2is of the same order of magnitude

as the longitudinal bending moment. :till, confirming the plate-like nature of the deformation in each panel,

an effect ignored by the beam model.

7. Conclusions. In this work, a new geometric integration procedure was developed for the simulation

of multibody system dynamics involving shells. The proposed scheme is "aware" of the qualitative features

of the underlying partial differential equations. In particular, it. evolves on the special manifold defined

by two-parameter rotation fields, on the manifold defined by the presence of holonomic and non-holonomic

constraints imposed by the mechanical joints and on the manifold of constant total linear and angular

momenta.

In contrast with the classical energy preserving approaches, the metho<t presented here lets the system
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drift away from the level of constant energy in a controlled manner. This achieves two important goals.

First, a bound is placed on the total mechanical energy of the system at the discrete solution level, therefore

achieving nonlinear unconditional stability. Second, the energy decay provides high frequency numerical

dissipation. The proposed integrator can be used with arbitrary spatial discretizations, for example based

on finite element or finite volume techniques. The shear locking phenomenon was controlled using the mixed

interpolation of tensorial components approach.

The proposed shell model was developed within the framework of a multibody dynamics analysis proce-

dure that includes rigid bodies, beams, and various types of joints. The constraint forces are discretized so

that the work they perform vanishes exactly at the discrete level. A shell revolute joint that connect shells

to other elements of the model was developed. The efficiency and robustness of the proposed approach were

demonstrated with specific numerical examples.
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Appendix A. Rodrigues Parameters.

A common representation of finite rotations [20] is in terms of Rodrigues parameters _r = 2k tan ¢/2,

where _b is tile magnitude of the finite rotation and k_ the components of the unit vector about which it takes

[)lace• The following notation is introduced r0 = cos 2 0/2 = 1 / (1 + r_w r_/4), and the finite rotation tensor

R then writes

r0

n(r) = r + r0 _+ -g _r. (i.1)

The following decomposition of the rotation tensor is extensively used in this work

- T

--
Appendix B. Orientation of a Unit Director.

Consider a unit vector ia, called a director, that rotates to a final orientation ea. For convenience, this

director is considered to be the third unit vector of a triad S defined by il, i2,/_, rotating to a triad S* with

orientation g_, £2, ea. The relationship between these two triads is £_ = R /a, where R is an orthogonal

rotation tensor• If one solely focuses on the director, this rotation tensor is not uniquely defined, as any

rotation about the director leaves its orientation unchanged. A virtual change in the director orientation is

5e__a = e_:Taj_2, (B. 1)

where a¢ is the virtual rotation vector, &b = aRn r
The components of the virtual change in director orientation measured in ,5* become

RT(_e_3 RTe--_33 ($_) _nT(_lj, = WT * (S.2)= = __ _35¢ = &b_ ,
0

where &b* are the components of the virtual rotation vector in ,5". This relationship clearly, demonstrates

that arbitrary values of 5g'_, corresponding to virtual rotations of the director about its own orientation,

will not affect virtual c:hanges in the director orientation, and hence, setting &b_ = 0 is a valid choice. The

following notation is adopted

a¢* = i,5_ + z_eaa_ = b 5c_*; b = [/, ,i2]- (B.3)

5c_* is a 2 x 1, "two parameter" virtual rotation vector. It follows that &b = R 5g__J*= Rb 5____.*,and hence

&__= n _ b am*. (s.4)

If Rodrigues parameters are used to para.meterize R, an equivalent expression can be ohtained for finite

changes in director orientation with the help of eq. (A.2)

E,_I - e_-,_i = Rm _.'77zc,b _s* = O,,, s*; _r* = b s_*, (B.5)

where r_* are the Rodrigues parameter measured in S*, and s* the corresponding "two parameter" incremental

rotation vector.
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